If it's not what You are looking for type in the equation solver your own equation and let us solve it.
51x^2-34x=0
a = 51; b = -34; c = 0;
Δ = b2-4ac
Δ = -342-4·51·0
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-34}{2*51}=\frac{0}{102} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+34}{2*51}=\frac{68}{102} =2/3 $
| 15x-183=73+7x | | 5x+27+4=4(2x+8) | | |2x+5|+10=6 | | 7-7n=105 | | 2x+16=11x+7 | | -3(3v-9)+2v=7(v+3) | | 3(x+20)-4x=2 | | 7(x➖3)➖5(2x➖4)=5 | | 6-3x+x=8 | | 51x^2-31x=0 | | 2(w-6)-2=-4(-6w+6)-8w | | -t/4=-3£ | | 10b³-5b²+2b-1=0 | | 6a-7(6a-2)=-322 | | -3(-6x+9)-9x=5(x-7)-6 | | 3b/8+b/4=5/2 | | x-7+8=7 | | 2m-3=14 | | x+2=7x+14 | | 10x+x=22 | | 1+x-7x=-11 | | 8(x+6)=4x+40 | | 30(x+10)=1350 | | Xx5=15 | | 2f+8=9f-6 | | 4x2=59x+80 | | 5c+7=2c+25 | | X2-3x=5 | | 30(x+10)=900 | | 2=n/3-3 | | 8(2a-1)-5a=15+3(3a+3) | | -4(2-r)=8 |